direct product, metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: S3×C22⋊C4, D6.10D4, C23.18D6, (C2×C4)⋊5D6, D6⋊C4⋊9C2, D6⋊5(C2×C4), C2.1(S3×D4), C22⋊4(C4×S3), C6.17(C2×D4), (C22×S3)⋊2C4, (C2×C12)⋊6C22, C6.6(C22×C4), C6.D4⋊3C2, (S3×C23).1C2, (C2×C6).21C23, (C2×Dic3)⋊5C22, (C22×C6).10C22, C22.13(C22×S3), (C22×S3).33C22, (S3×C2×C4)⋊8C2, C2.8(S3×C2×C4), (C2×C6)⋊1(C2×C4), C3⋊1(C2×C22⋊C4), (C3×C22⋊C4)⋊8C2, SmallGroup(96,87)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for S3×C22⋊C4
G = < a,b,c,d,e | a3=b2=c2=d2=e4=1, bab=a-1, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, ece-1=cd=dc, de=ed >
Subgroups: 330 in 132 conjugacy classes, 49 normal (15 characteristic)
C1, C2, C2, C2, C3, C4, C22, C22, C22, S3, S3, C6, C6, C6, C2×C4, C2×C4, C23, C23, Dic3, C12, D6, D6, C2×C6, C2×C6, C2×C6, C22⋊C4, C22⋊C4, C22×C4, C24, C4×S3, C2×Dic3, C2×C12, C22×S3, C22×S3, C22×S3, C22×C6, C2×C22⋊C4, D6⋊C4, C6.D4, C3×C22⋊C4, S3×C2×C4, S3×C23, S3×C22⋊C4
Quotients: C1, C2, C4, C22, S3, C2×C4, D4, C23, D6, C22⋊C4, C22×C4, C2×D4, C4×S3, C22×S3, C2×C22⋊C4, S3×C2×C4, S3×D4, S3×C22⋊C4
Character table of S3×C22⋊C4
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 2J | 2K | 3 | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 6A | 6B | 6C | 6D | 6E | 12A | 12B | 12C | 12D | |
size | 1 | 1 | 1 | 1 | 2 | 2 | 3 | 3 | 3 | 3 | 6 | 6 | 2 | 2 | 2 | 2 | 2 | 6 | 6 | 6 | 6 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ9 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -i | i | -i | i | -i | -i | i | i | -1 | -1 | 1 | -1 | 1 | i | -i | i | -i | linear of order 4 |
ρ10 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | i | -i | i | -i | i | i | -i | -i | -1 | -1 | 1 | -1 | 1 | -i | i | -i | i | linear of order 4 |
ρ11 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -i | i | -i | i | i | i | -i | -i | -1 | -1 | 1 | -1 | 1 | i | -i | i | -i | linear of order 4 |
ρ12 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | i | -i | i | -i | -i | -i | i | i | -1 | -1 | 1 | -1 | 1 | -i | i | -i | i | linear of order 4 |
ρ13 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | i | -i | -i | i | i | -i | -i | i | -1 | -1 | 1 | 1 | -1 | i | -i | -i | i | linear of order 4 |
ρ14 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -i | i | i | -i | -i | i | i | -i | -1 | -1 | 1 | 1 | -1 | -i | i | i | -i | linear of order 4 |
ρ15 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | i | -i | -i | i | -i | i | i | -i | -1 | -1 | 1 | 1 | -1 | i | -i | -i | i | linear of order 4 |
ρ16 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -i | i | i | -i | i | -i | -i | i | -1 | -1 | 1 | 1 | -1 | -i | i | i | -i | linear of order 4 |
ρ17 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | orthogonal lifted from D6 |
ρ18 | 2 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | orthogonal lifted from D6 |
ρ19 | 2 | -2 | -2 | 2 | 0 | 0 | -2 | -2 | 2 | 2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ20 | 2 | -2 | 2 | -2 | 0 | 0 | -2 | 2 | -2 | 2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ21 | 2 | -2 | 2 | -2 | 0 | 0 | 2 | -2 | 2 | -2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ22 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ23 | 2 | -2 | -2 | 2 | 0 | 0 | 2 | 2 | -2 | -2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ24 | 2 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | orthogonal lifted from D6 |
ρ25 | 2 | 2 | -2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -2i | 2i | 2i | -2i | 0 | 0 | 0 | 0 | 1 | 1 | -1 | -1 | 1 | i | -i | -i | i | complex lifted from C4×S3 |
ρ26 | 2 | 2 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 2i | -2i | 2i | -2i | 0 | 0 | 0 | 0 | 1 | 1 | -1 | 1 | -1 | i | -i | i | -i | complex lifted from C4×S3 |
ρ27 | 2 | 2 | -2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 2i | -2i | -2i | 2i | 0 | 0 | 0 | 0 | 1 | 1 | -1 | -1 | 1 | -i | i | i | -i | complex lifted from C4×S3 |
ρ28 | 2 | 2 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -2i | 2i | -2i | 2i | 0 | 0 | 0 | 0 | 1 | 1 | -1 | 1 | -1 | -i | i | -i | i | complex lifted from C4×S3 |
ρ29 | 4 | -4 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from S3×D4 |
ρ30 | 4 | -4 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from S3×D4 |
(1 6 9)(2 7 10)(3 8 11)(4 5 12)(13 22 17)(14 23 18)(15 24 19)(16 21 20)
(5 12)(6 9)(7 10)(8 11)(17 22)(18 23)(19 24)(20 21)
(1 3)(2 13)(4 15)(5 24)(6 8)(7 22)(9 11)(10 17)(12 19)(14 16)(18 20)(21 23)
(1 14)(2 15)(3 16)(4 13)(5 22)(6 23)(7 24)(8 21)(9 18)(10 19)(11 20)(12 17)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)
G:=sub<Sym(24)| (1,6,9)(2,7,10)(3,8,11)(4,5,12)(13,22,17)(14,23,18)(15,24,19)(16,21,20), (5,12)(6,9)(7,10)(8,11)(17,22)(18,23)(19,24)(20,21), (1,3)(2,13)(4,15)(5,24)(6,8)(7,22)(9,11)(10,17)(12,19)(14,16)(18,20)(21,23), (1,14)(2,15)(3,16)(4,13)(5,22)(6,23)(7,24)(8,21)(9,18)(10,19)(11,20)(12,17), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)>;
G:=Group( (1,6,9)(2,7,10)(3,8,11)(4,5,12)(13,22,17)(14,23,18)(15,24,19)(16,21,20), (5,12)(6,9)(7,10)(8,11)(17,22)(18,23)(19,24)(20,21), (1,3)(2,13)(4,15)(5,24)(6,8)(7,22)(9,11)(10,17)(12,19)(14,16)(18,20)(21,23), (1,14)(2,15)(3,16)(4,13)(5,22)(6,23)(7,24)(8,21)(9,18)(10,19)(11,20)(12,17), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24) );
G=PermutationGroup([[(1,6,9),(2,7,10),(3,8,11),(4,5,12),(13,22,17),(14,23,18),(15,24,19),(16,21,20)], [(5,12),(6,9),(7,10),(8,11),(17,22),(18,23),(19,24),(20,21)], [(1,3),(2,13),(4,15),(5,24),(6,8),(7,22),(9,11),(10,17),(12,19),(14,16),(18,20),(21,23)], [(1,14),(2,15),(3,16),(4,13),(5,22),(6,23),(7,24),(8,21),(9,18),(10,19),(11,20),(12,17)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24)]])
G:=TransitiveGroup(24,146);
S3×C22⋊C4 is a maximal subgroup of
C24.35D6 C24.38D6 C42⋊9D6 C42⋊12D6 C4×S3×D4 C42⋊13D6 D12⋊23D4 C42⋊18D6 C24⋊7D6 C24.44D6 C6.402+ 1+4 D12⋊20D4 C6.422+ 1+4 D12⋊21D4 C6.512+ 1+4 C6.532+ 1+4 C6.1202+ 1+4 C6.1212+ 1+4 C6.612+ 1+4 C6.1222+ 1+4 C6.622+ 1+4 D12⋊10D4 C42⋊22D6 C42⋊23D6 C42⋊25D6 C42⋊26D6 C62.91C23 C62.116C23 D30.27D4 D30.45D4
S3×C22⋊C4 is a maximal quotient of
(C2×C12)⋊Q8 C22.58(S3×D4) (C2×C4)⋊9D12 D6⋊C42 D6⋊(C4⋊C4) D6⋊M4(2) D6⋊C8⋊C2 C23⋊C4⋊5S3 M4(2).19D6 M4(2).21D6 C4⋊C4⋊19D6 D4⋊(C4×S3) D4⋊2S3⋊C4 (S3×Q8)⋊C4 Q8⋊7(C4×S3) C4⋊C4.150D6 C42⋊3D6 C24.55D6 C24.59D6 C24.23D6 C24.24D6 C62.91C23 C62.116C23 D30.27D4 D30.45D4
Matrix representation of S3×C22⋊C4 ►in GL4(𝔽13) generated by
12 | 12 | 0 | 0 |
1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 |
12 | 12 | 0 | 0 |
0 | 0 | 12 | 0 |
0 | 0 | 0 | 12 |
12 | 0 | 0 | 0 |
0 | 12 | 0 | 0 |
0 | 0 | 12 | 0 |
0 | 0 | 12 | 1 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 12 | 0 |
0 | 0 | 0 | 12 |
5 | 0 | 0 | 0 |
0 | 5 | 0 | 0 |
0 | 0 | 1 | 11 |
0 | 0 | 1 | 12 |
G:=sub<GL(4,GF(13))| [12,1,0,0,12,0,0,0,0,0,1,0,0,0,0,1],[1,12,0,0,0,12,0,0,0,0,12,0,0,0,0,12],[12,0,0,0,0,12,0,0,0,0,12,12,0,0,0,1],[1,0,0,0,0,1,0,0,0,0,12,0,0,0,0,12],[5,0,0,0,0,5,0,0,0,0,1,1,0,0,11,12] >;
S3×C22⋊C4 in GAP, Magma, Sage, TeX
S_3\times C_2^2\rtimes C_4
% in TeX
G:=Group("S3xC2^2:C4");
// GroupNames label
G:=SmallGroup(96,87);
// by ID
G=gap.SmallGroup(96,87);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-2,-3,188,50,2309]);
// Polycyclic
G:=Group<a,b,c,d,e|a^3=b^2=c^2=d^2=e^4=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,e*c*e^-1=c*d=d*c,d*e=e*d>;
// generators/relations
Export